
Satellite Communications Toolbox Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Satellite Communications Toolbox Release Notes
© COPYRIGHT 2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021b

Satellite scenario enhancements . 1-2

Improved performance for computing satellite orbits 1-2

Improved performance for access analysis . 1-4

Improved performance for satellite scenario viewer 1-5

Improved performance for field of view visualization 1-6

Improved performance for link analysis when using Gaussian antennas
. 1-7

Satellite Link Budget Analyzer app enhancements 1-8

Support for DVB-RCS2 . 1-8

Support for satellite navigation systems . 1-9

End-to-End Simulation examples . 1-9

Receive and analyze captured satellite data . 1-9

MATLAB Compiler Support . 1-9

MATLAB Online Support . 1-10

R2021a

Introducing Satellite Communications Toolbox . 2-2

Satellite Scenario: Simulate, analyze, and visualize satellites in orbit . . . 2-2

Satellite link budget analysis . 2-2

Standards-based waveform generation . 2-2

Channel models and RF propagation loss . 2-3

iii

Contents

Signal recovery . 2-3

C and C++ code generation support . 2-3

iv Contents

R2021b

Version: 1.1

New Features

1

Satellite scenario enhancements
• Satellite radiation pattern visualization

The pattern function enables visualization of satellite and ground station antenna radiation
patterns in the satelliteScenarioViewer.

• Calculate latency and Doppler in a satellite scenario

The “Calculate Latency and Doppler in a Satellite Scenario” example calculates the latency,
Doppler frequency, and latency and Doppler rates of changes between an orbiting satellite and a
ground station.

• Interference from a satellite constellation on a communications link

The “Interference from Satellite Constellation on Communications Link” example analyzes
downlink interference by calculating signal-to-interference-plus-noise ratio (SINR) for a
geosynchronous satellite to a ground station located in the Pacific Ocean, with a constellation of
multiple low Earth orbit (LEO) satellites causing interference.

Improved performance for computing satellite orbits
The satelliteScenario object shows improved simulation performance when you use Two-Body-
Keplerian, SGP4, or SDP4 orbit propagators. The performance improvement is observable when the
scenario involves large satellite constellations involving 40 or more satellites and/or when the
scenario contains more than 1000 time samples between start and stop times.

For example, compared to the previous release, the following code demonstrates that the
computation of the position history of 1000 satellites using Two-Body-Keplerian, SGP4, and SDP4
orbit propagators is about 51x, 64x, and 50x faster, respectively.

% Create 3 satellite scenario objects. The specified start,
% stop, and sample times result in 1441 time samples in the
% scenario. Each scenario tests a specific orbit propagator.
startTime = datetime(2021,7,8);
stopTime = startTime + days(1);
sampleTime = 60;
scTBK = satelliteScenario(startTime,stopTime,sampleTime);
scSGP4 = satelliteScenario(startTime,stopTime,sampleTime);
scSDP4 = satelliteScenario(startTime,stopTime,sampleTime);

% Use the Keplerian elements to add 1000 satellites to each
% scenario with the orbit propagator in order:
% Two-Body-Keplerian, SGP4, and SDP4.
semiMajorAxis = ones(1,1000)*10000000;
eccentricity = ones(1,1000)*0.1;
inclination = ones(1,1000)*60;
rightAscensionOfAscendingNode = repmat(0:18:360-18,1,50);
argumentOfPeriapsis = zeros(1,1000);
trueAnomaly = sort(repmat(0:7.2:360-7.2,1,20));
satTBK = satellite(scTBK, ...
 semiMajorAxis, ...
 eccentricity, ...
 inclination, ...
 rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis, ...

R2021b

1-2

 trueAnomaly, ...
 "OrbitPropagator","two-body-keplerian");
satSGP4 = satellite(scSGP4, ...
 semiMajorAxis, ...
 eccentricity, ...
 inclination, ...
 rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis, ...
 trueAnomaly, ...
 "OrbitPropagator","sgp4");
satSDP4 = satellite(scSDP4, ...
 semiMajorAxis, ...
 eccentricity, ...
 inclination, ...
 rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis, ...
 trueAnomaly, ...
 "OrbitPropagator","sdp4");

% Initialize an array to store the satellite position in the
% GCRF frame.
numTimeSamples = ceil(seconds(stopTime - startTime) ...
 /sampleTime) + 1;
positionsTBK = zeros(3,numTimeSamples,1000);
positionsSGP4 = zeros(3,numTimeSamples,1000);
positionsSDP4 = zeros(3,numTimeSamples,1000);

% Time the simulation with Two-Body-Keplerian.
tic

% Fill out the position array using the states function.
% The first call to states simulates the scenario.
for idx = 1:1000
 positionsTBK(:,:,idx) = states(satTBK(idx));
end

% Store the execution time.
executionTime = toc;

% Display the execution time.
disp("Time to compute the satellite states using ...
 Two-Body-Keplerian = " + executionTime + " seconds.");

% Time the simulation with SGP4.
tic

% Fill out the position array using the states function.
% The first call to states simulates the scenario.
for idx = 1:1000
 positionsSGP4(:,:,idx) = states(satSGP4(idx));
end

% Store the execution time.
executionTime = toc;

% Display the execution time.
disp("Time to compute the satellite states using SGP4 = " ...
 + executionTime + " seconds.");

1-3

% Time the simulation with SDP4.
tic

% Fill out the position array using the states function.
% The first call to states simulates the scenario.
for idx = 1:1000
 positionsSDP4(:,:,idx) = states(satSDP4(idx));
end

% Store the execution time.
executionTime = toc;

% Display the execution time.
disp("Time to compute the satellite states using SDP4 = " ...
 + executionTime + " seconds.");

The approximate execution times are:

R2021a: Two-Body-Keplerian – 393.49 s, SGP4 – 515.55 s, and SDP4 – 734.12 s

R2021b: Two-Body-Keplerian – 7.63 s, SGP4 – 7.95 s, and SDP4 – 14.53 s

The code was timed on a Windows 10, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz test system by
running this script.

You can observe the performance improvement in all functions related to satellite scenario objects.

Improved performance for access analysis
The Access object functions (accessPercentage, accessIntervals, and accessStatus) show
improved performance, which is observable when the number of access analysis objects in the
scenario is 40 or more, and/or when the scenario contains more than 1000 time samples between
start and stop times.

For example, compared to the previous release, the following code is about 29x faster.

% Create a satellite scenario object.
startTime = datetime(2021,7,8);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

% Add 40 satellites.
sat = satellite(sc,'leoSatelliteConstellation.tle');

% Point the satellites at a specified geographical coordinate.
for idx = 1:numel(sat)
 pointAt(sat(idx),[0;0;0]);
end

% Add gimbals to the satellites, and then add a conical sensor
% to the gimbal.
for idx = 1:numel(sat)
 gim = gimbal(sat(idx));
 conicalSensor(gim);
end

R2021b

1-4

% Add a ground station.
gs = groundStation(sc);

% Point the gimbals at the ground station.
gim = [sat.Gimbals];
for idx = 1:numel(gim)
 pointAt(gim(idx),gs);
end

% Add access analysis between each conical sensor and
% the ground station.
sensor = [gim.ConicalSensors];
for idx = 1:numel(sensor)
 access(sensor(idx),gs);
end

% Retrieve the access objects.
ac = [sensor.Accesses];

% Time the computation of the access intervals for all the
% access objects.
tic;
intvls = accessIntervals(ac);
executionTime = toc;
disp("Execution of accessIntervals = " + executionTime + ...
 " seconds.");

The approximate execution times are:

R2021a: 48.18 s

R2021b: 1.64 s

The code was timed on a Windows 10, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz test system by
running this script.

Improved performance for satellite scenario viewer
The graphic updates on the satelliteScenarioViewer are observed to be faster when the
satellite scenario contains 50 or more satellites.

For example, compared to the previous release, the following code for updating the visualization of
1000 satellites on the satellite scenario viewer is about 5x faster.

% Create a satellite scenario object.
startTime = datetime(2021,7,8);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

% Add 1000 satellites to the scenario using Keplerian elements.
semiMajorAxis = ones(1,1000)*10000000;
eccentricity = ones(1,1000)*0.1;
inclination = ones(1,1000)*60;
rightAscensionOfAscendingNode = repmat(0:18:360-18,1,50);
argumentOfPeriapsis = zeros(1,1000);

1-5

trueAnomaly = sort(repmat(0:7.2:360-7.2,1,20));
sat = satellite(sc, ...
 semiMajorAxis, ...
 eccentricity, ...
 inclination, ...
 rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis, ...
 trueAnomaly);

% Before launching the satellite scenario viewer, hide the
% satellite labels.
for idx = 1:numel(sat)
 sat(idx).ShowLabel = false;
end

% Launch the satellite scenario viewer and hide the satellites.
v = satelliteScenarioViewer(sc);
hide(sat);

% Show the satellites and time, again.
tic;
show(sat);
updateTime = toc;
disp("Time to update the graphics = " + updateTime + ...
 " seconds.");

The approximate execution times are:

R2021a: 77.76 s

R2021b: 14.15 s

The code was timed on a Windows 10, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz test system by
running this script.

Improved performance for field of view visualization
The visualization using the fieldOfView function of ConicalSensor object is observed to be faster.
The performance improvement is observable even if only one field-of-view contour is displayed and
becomes pronounced as you add more contours and/or the number of time samples between the
satellite scenario start and stop times is greater than 1000.

For example, compared to the previous release, the following code for visualizing 40 field-of-view
contours with 86,401 sample times is about 2.7x faster.

% Create a satellite scenario object.
startTime = datetime(2021,7,8);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

% Add 40 satellites.
sat = satellite(sc,"leoSatelliteConstellation.tle");

% Add conical sensors to each satellite.
for idx = 1:numel(sat)
 conicalSensor(sat(idx));

R2021b

1-6

end

% Point the satellites at a specified geographical location.
for idx = 1:numel(sat)
 pointAt(sat(idx),[0;0;0]);
end

% Add field-of-view visualization to the conical sensors.
sensors = [sat.ConicalSensors];
fieldOfView(sensors);

% Launch the satellite scenario viewer.
v = satelliteScenarioViewer(sc);

% Play the scenario to visualize the evolution of field-of-view
% contours, and time it.
tic;
play(sc);
executionTime = toc;
disp("Time taken to calculate and visualize the ...
 field-of-view contours = " + executionTime + " seconds.");

The approximate execution times are:

R2021a: 102.52 s

R2021b: 37.56 s

The code was timed on a Windows 10, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz test system by
running this script.

Improved performance for link analysis when using Gaussian
antennas
The Link object functions (linkPercentage, linkStatus, and linkIntervals) show improved
performance when using Gaussian antennas. This improvement is observable when the number of
link analysis objects in the scenario is 40 or more, and/or when the scenario contains more than 1000
time samples between start and stop times.

For example, compared to the previous release, the following code is about 34x faster.

% Create a satellite scenario object.
startTime = datetime(2021,7,8);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

% Add 40 satellites.
sat = satellite(sc,'leoSatelliteConstellation.tle');

% Point the satellites at a specified geographical coordinate.
for idx = 1:numel(sat)
 pointAt(sat(idx),[0;0;0]);
end

% Add gimbals to the satellites, and then add a transmitter

1-7

% to the gimbal.
for idx = 1:numel(sat)
 gim = gimbal(sat(idx));
 transmitter(gim);
end

% Add a ground station, and then add a receiver to it.
gs = groundStation(sc);
rx = receiver(gs,"MountingAngles",[0;180;0]);

% Point the gimbals at the ground station.
gim = [sat.Gimbals];
for idx = 1:numel(gim)
 pointAt(gim(idx), gs);
end

% Add link analysis between each satellite transmitter and the
% ground station receiver.
tx = [gim.Transmitters];
for idx = 1:numel(tx)
 link(tx(idx),rx);
end

% Retrieve the link objects.
lnk = [tx.Links];

% Time the computation of the link intervals for all the
% link objects.
tic;
intvls = linkIntervals(lnk);
executionTime = toc;
disp("Execution of linkIntervals = " + executionTime + " seconds.");

The approximate execution times are:

R2021a: 49.75 s

R2021b: 1.43 s

The code was timed on a Windows 10, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz test system by
running this script.

Satellite Link Budget Analyzer app enhancements
The Satellite Link Budget Analyzer app now supports link availability analysis with P.618
propagation data and prediction methods. For more information, see Satellite Link Budget Analyzer.

Support for DVB-RCS2
Use the features listed in this table to encode and decode Digital Video Broadcasting Second
Generation Return Channel over Satellite (DVB-RCS2) duo-binary turbo codes, generate a DVB-RCS2
standard-based waveform, and recover the signal.

R2021b

1-8

Function Description
dvbrcs2TurboEncode Encode DVB-RCS2-compliant turbo codes
dvbrcs2TurboDecode Decode DVB-RCS2-compliant turbo codes
dvbrcs2WaveformGenerator Generate DVB-RCS2 waveform
dvbrcs2RecoveryConfig DVB-RCS2 receiver configuration parameters
dvbrcs2BitRecover Recover bits for DVB-RCS2 waveform

Support for satellite navigation systems
Use the features listed in this table to generate coarse acquisition codes (C/A-codes) and precision
codes (P-codes).

Function Description
gnssCACode Generate C/A-code for GPS, NavIC, and QZSS

satellites
gpsPCode Generate P-code for GPS satellites

For more information on how to configure and generate a GPS waveform using C/A and P-codes, see
“GPS Waveform Generation”.

End-to-End Simulation examples
• “End-to-End DVB-S2X Simulation with RF Impairments and Corrections for VL-SNR Frames” —

This example shows how to measure the bit error rate (BER) and packet error rate (PER) of a
single stream Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) link for
very low signal-to-noise ratio (VL-SNR) frames.

• “DVB-S2 Bent Pipe Simulation with RF Impairments and Corrections” — This Simulink® example
models a DVB-S2 bent-pipe satellite link and calculates the end-to-end PER and a low density
parity check (LDPC) coding BER.

• “End-to-End CCSDS Flexible Advanced Coding and Modulation Simulation with RF Impairments
and Corrections” — This example shows how to measure the BER of the end-to-end chain of the
Consultative Committee for Space Data Systems (CCSDS) flexible advanced coding and
modulation (FACM) scheme for a high-rate telemetry (TM) applications system.

Receive and analyze captured satellite data
Use the Amazon® Web Services (AWS) Ground Station service with MATLAB® to receive data from an
Earth observation satellite. Set up access to AWS, configure and set up data capture, schedule
contact with the satellite, and download the received satellite data. For details, see “Capture Satellite
Data Using AWS Ground Station”.

MATLAB Compiler Support
MATLAB Compiler™ now supports Satellite Communications Toolbox software. For information about
product limitations, see MATLAB Compiler and Simulink Compiler.

1-9

https://www.mathworks.com/products/compiler/compiler_support.html

MATLAB Online Support
MATLAB Online™ now supports Satellite Communications Toolbox software. For information about
product limitations, see Specifications and Limitations.

R2021b

1-10

https://www.mathworks.com/products/matlab-online/limitations.html

R2021a

Version: 1.0

New Features

2

Introducing Satellite Communications Toolbox
Satellite Communications Toolbox provides standards-based tools for designing, simulating, and
verifying satellite communications systems and links. The toolbox enables you to model and visualize
satellite orbits and perform link analysis and access calculations. You can also design physical layer
algorithms together with RF components and ground station receivers, generate test waveforms, and
perform golden reference design verification.

With the toolbox you can configure, simulate, measure, and analyze end-to-end satellite
communications links. You can also create and reuse tests to verify that your designs, prototypes, and
implementations comply with satellite communications and navigations standards, including DVB-
S2X, DVB-S2, CCSDS, and GPS.

Satellite Scenario: Simulate, analyze, and visualize satellites in orbit
Use functions and reference examples that enable you to simulate, analyze, and visualize satellites in
orbits. Use the satelliteScenario object to:

• Define satellites and their orbits.
• Define ground stations.
• Visualize satellites in orbit and ground tracks.
• Visualize satellite field-of-view on Earth.
• Analyze line-of-sight access between satellites and ground stations.
• Analyze the closure of communications links between satellites and ground stations.
• View a satellite scenario with playback animation.

For more information, see Satellite Scenario Basics and Scenario Generation and Visualization.

Satellite link budget analysis
Use the Satellite Link Budget Analyzer app to analyze, design, and visualize the link budget for
satellite communications. For more information, see Link Budget Analysis.

Standards-based waveform generation
Use standards-based functions and reference examples to design, model, and verify satellite
communications and navigation systems. The toolbox offers these standards-based waveforms:

• Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC)
• CCSDS Telemetry (TM)
• Digital Video Broadcasting Satellite Second Generation (DVB-S2)
• Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X)
• Global Positioning System (GPS)

For more information, see Generate Waveforms and Signal Transmission.

R2021a

2-2

https://www.mathworks.com/help/releases/R2021a/satcom/ref/satellitescenario.html
https://www.mathworks.com/help/releases/R2021a/satcom/gs/satellite-scenario-overview.html
https://www.mathworks.com/help/releases/R2021a/satcom/scenario-generation-and-visualization.html
https://www.mathworks.com/help/releases/R2021a/satcom/ref/satellitelinkbudgetanalyzer-app.html
https://www.mathworks.com/help/releases/R2021a/satcom/link-budget-analysis.html
https://www.mathworks.com/help/releases/R2021a/satcom/gs/generate-waveforms.html
https://www.mathworks.com/help/releases/R2021a/satcom/signal-transmission.html

Channel models and RF propagation loss
Use ITU-R P.618 functions to design Earth-space links by calculating the signal propagation loss
through the atmosphere. With these toolbox features, you can also model and visualize noisy single
input single output (SISO) channels that have Rician or Land Mobile Satellite (LMS) fading profiles.
For more information, see RF Propagation and Channel Models.

Signal recovery
Use receiver functions to decode and demodulate waveforms. Use reference examples to model end-
to-end communications links and analyze link performance. For more information, see End-to-End
Simulation.

C and C++ code generation support
Satellite Communications Toolbox supports ANSI®/ISO® compliant C/C++ code generation. For an
alphabetized list of features that support C/C++ code generation, see Satellite Communications
Toolbox – Functions and Objects Filtered by C/C++ Code Generation.

2-3

https://www.mathworks.com/help/releases/R2021a/satcom/rf-propagation-and-channel-models.html
https://www.mathworks.com/help/releases/R2021a/satcom/end-to-end-simulation.html
https://www.mathworks.com/help/releases/R2021a/satcom/end-to-end-simulation.html
https://www.mathworks.com/help/releases/R2021a/satcom/referencelist.html?type=function
https://www.mathworks.com/help/releases/R2021a/satcom/referencelist.html?type=function

	R2021b
	Satellite scenario enhancements
	Improved performance for computing satellite orbits
	Improved performance for access analysis
	Improved performance for satellite scenario viewer
	Improved performance for field of view visualization
	Improved performance for link analysis when using Gaussian antennas
	Satellite Link Budget Analyzer app enhancements
	Support for DVB-RCS2
	Support for satellite navigation systems
	End-to-End Simulation examples
	Receive and analyze captured satellite data
	MATLAB Compiler Support
	MATLAB Online Support

	R2021a
	Introducing Satellite Communications Toolbox
	Satellite Scenario: Simulate, analyze, and visualize satellites in orbit
	Satellite link budget analysis
	Standards-based waveform generation
	Channel models and RF propagation loss
	Signal recovery
	C and C++ code generation support

